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Current density and electric and magnetic 
multipole-moment operators in quantum mechanics 
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Physikalische Institute, RWTH Aachen, Sommerfeld, 5 1 Aachen, West Germany 

Received 8 December 1978, in final form 7 March 1979 

Abstract. We define the quantum-mechanical current density operator for general Hamil- 
tonian operators and hence define electric and magnetic multipole-moment operators in 
close correspondence with the classical case. General Hamiltonian operators are trans- 
formed to multipole form by canonical transformation. As examples we treat the charge 
exchange interaction and relativistic corrections to the magnetic moment of an electron 
moving in a central potential. 

1. Introduction 

In the preceding paper (Meister and Felderhof 1980, to be referred to as I) we have 
presented definitions of the quantum mechanical electric and magnetic multipole- 
moment operators. For the magnetic moments the correspondence with the classical 
case could strictly speaking be established only for the Schrodinger Hamiltonian 
operator. For general Hamiltonian operators the definition of the current density 
operator was lacking. In this paper we show that the current density operator can be 
defined uniquely from the first-order interaction with the electromagnetic field. The 
resulting magnetic multipole-moment operators are in direct correspondence with the 
classical moments. 

We also show that for general Hamiltonian operators one can perform a canonical 
transformation to multipole form in which the polarisation and magnetisation operators 
couple to the electric and magnetic fields. The transformation allows a simpler 
formulation of Siegert's theorem. 

As an example we consider the contribution to the current-density operator from 
charge exchange interactions. We evaluate explicitly the corresponding magnetic 
dipole and quadrupole moments. We also study relativistic corrections to the magnetic 
dipole moment of an electron moving in a central potential. Since the corrections 
appear in the operators rather than in the energy levels, a simpler and more transparent 
picture emerges than is evident from previous treatments. 

2. Definition of the current density operator 

We consider a general Hamiltonian operator of the form 

H=H*'((pk-((ek/C)A(rk), l'k,Sk})+HRad-[ &(r) .B( r )dr ,  (2.1) 
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130 T F Meister and B U Felderhof 

where HAt is the Hamiltonian for the atom or nucleus in interaction with the radiation 
field, HRad is the Hamiltonian for the free radiation field, 

H~~~ = ( 1 / 8 ~ )  J (E: ( r )  + ~ ~ ( r ) )  d r  (2.2) 

and the intrinsic magnetisation A@) is defined by 

A ( r )  = c pjsjs(r - rj), (2.3) 

where the sj are spin operators and the pi are values of the intrinsic magnetic moments. 
We use the vector potential A ( r )  in the Coulomb gauge V . A = 0, and include the 
longitudinal Coulomb interaction in (2.1) as a potential energy term. The Hamiltonian 
operator (2.1) must be regarded as a phenomenological one. The main assumptions 
involved are that the interactions between particles can be described by potential 
energy terms, possibly velocity-dependent, and that the interaction with the elec- 
tromagnetic field is given by a point charge approximation. The Hamiltonian can 
include spin-orbit interactions, charge exchange coupling terms, etc. The fact that 
momentum and vector potential appear in the combination P k  - (ek/c)A(rk) is an 
expression of gauge invariance. We could have included isospin, but have omitted it to 
keep the formalism simple. The difficulties which arise in the definition of charge and 
current densities when the point charge approximation is dropped have been studied by 
Foldy (1953). 

Since the interaction with the radiation field is weak we can expand HA' in powers of 
A. Thus we obtain 

i 

H=Ho+ VI+ v2+. . . , (2.4) 

v1 = vyb - J ~ ( r ) .  ~ ( r )  dr, (2.5) 

where 

HO = H? ({Pk, rk, sk)) fHRad, 

with 

By definition the operator Hi ,  is linear in A n ( r ) .  To make the definition precise it is 
assumed that in writing out its form no use is made of the commutation relation between 
rj and pi. 

Writing A(rj)  in (2.6) as 

A ( r j )  = A(r )6 ( r - r i )  dr, (2.7) J 
we can put VYrb in the form 

VYrb = - ( l /c)  j o ( r ) .  A ( r )  dr. (2.8) 

This defines the zero-order current density operator j o ( r ) .  It is assumed that no use is 
made of the transversality of A(r) .  According to (2.5), the complete perturbation Vl 
can also be written in the form (2.8), with current density 

f o ( r )  = j o ( r ) + c V x A ( r ) .  (2.9) 
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We shall show that the above definition of j o ( r )  can be given a more attractive 
appearance. 

The operators H i ,  defined in (2.6) have the property 

(2.10) 

for any scalar function g ( r ) .  We have denoted the complete set of variables { p k ,  rk, sk} 
by X. The proof of this identity is given in I (4.10). In particular, one has for the zero 
order particle velocities 3, 

3 1 
r.  = - [ H ~ ,  ri] = H { ,  (x, 1)e,, (2.11) 
' - A  a = l  

where (e, = x ,  y ,  z )  are unit vectors. We define the super-operator 17 which can act on 
any operator F by 

(2.12) 

It is clear that r7 is a linear super-operator. From (2.11) it follows that 

r.  I 1  = rx1,  (2.13) 

The charge and current density operators can now be written in the form 

p ( r ) = C  e ja(r -r j ) ,  j o ( r )  = eir;Ys(r - ri) .  (2.14) 
i i 

It is easily shown that these operators satisfy the continuity equation 

/ i+v. j ,=o.  (2.15) 

The proof runs as follows: 

(2.16) 

i 
A i  

=--T ej[Ho, 6 ( r  - ri)] = -/i. 

In the last line we have used (2.10). 
Note that the continuity equation itself is not sufficient to determine the form of the 

current density operator, since it can only fix the longitudinal part (Warburton and 
Weneser 1969). The above rule makes the definition unique. Though we have started 
out in the Coulomb gauge, the definition of j o ( r )  is in fact gauge invariant. 

It is clear that the definition works just as well for uncharged particles. In that case 
the ek in (2.1) can be regarded as mere parameters and A ( r )  as an auxiliary vector field. 
This leads to the number density and flow velocity operators 

n ( r ) = C  6 ( r - r j ) ,  oo(r )  = i?a(r - r i ) .  (2.17) 

Using the same reasoning as in (2.16) one shows that these operators satisfy the 
continuity equation n + V . uo = 0. 

i i 
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3. Examples 

In order to illustrate the use of the operators uo(r) andjo(r)  defined above we consider 
some examples for particular Hamiltonian operators. 

3.1. Schrodinger Hamiltonian 

P' H? = 1 '+ U({rk, sk}). 
j 2mi 

The flow velocity operator becomes 

which is of the usual symmetrised form. 

3.2. Dirac Hamiltonian 

H F  = 1 ( ca j  . pi + pjmic2) + U({rk}), 
i 

where (ai, pi) are Dirac matrices. In this case 

HI,  ( { ~ k } ,  A, (rj)) = CajaAa (rj), 
so that 

3YF = c q  F. 

The flow velocity operator has the usual form, 

oo(r) = c Caj8(r  - ri). 
i 

(3.1) 

(3.2) 

(3.3) 

(3.5) 

3.3. Charge exchange interaction 

We consider a charge exchange interaction of Majorana type (Sachs 1953), 

U$ = J(rij)Pii, (3.9) U F h  = U$, 
i<j  

where Pij is a permutation operator which exchanges the coordinates of particles i and j .  
It has the explicit representation 

Pij = exp[(i/h)(ri -rj) (pi -pill (3.10) 

with the agreement that pi and pi act on wavefunctions but not on the coordinates ri and 
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(3.12) 

where the integral must be taken along the straight line from particle j to particle i .  The 
contribution to the current density operator from Uexch is given by 

j y h ( r ) =  1 1 [ejUia({Pk, Q), S(r-r j ) )ea +eiU1,({pk, rk), a(r-ri))eaI 
3 

i < j a = l  

(3.13) 

Clearly only pairs for which the charges differ contribute to this current density. The 
current density is concentrated on the straight lines between particles with different 
charges. If we consider protons (T )  and neutrons (v), then the exchange current density 
can be written 

1 

(3.14) 10 - 1 (ru - r f f )  S(r - r, - A  (ru - r,)) dA J(rffV)Pmv.  

This form for the current density was also given by Adams (1951) and by Sachs (1953), 
but after a much more complicated derivation. 

Io .exch - l e  

7. U 

3.4. Spin-orbit coupling 

We consider a single particle with charge e moving in a central potential. The spin-orbit 
interaction is of the form 

U,"' = J(rl)(r l  xp1) . s1. (3.15) 

Hence it follows that 
3 

a = l  
1 U f f [ p ~ ,  rl, S I ,  A a ( r l ) l =  EaPyJ(rl)Aa(rl)slprlv, (3.16) 

so that 

jks (r )  = ee,p,J(rl)S(r - r1)eas16rl,. = eJ(rl)sl  x r l ~ ( r -  r l ) .  (3.17) 

This current density is identical to what one finds by calculating the LS-contribution to 
tj directly from (3.15). The same is true for any interaction linear in p .  
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4. Electric and magnetic multipole moments 

Once the current density operator has been defined, one can derive corresponding 
polarisation and magnetisation operators by writing 

io(r)  = P ( r )  + cv x ~ o ( r ) ,  (4.1) 

where the electric polarisation P(r)  is given by the expansion (cf de Groot 1969 and 
(1.3.3)) 

~ ( r )  = 1 r'p(r') f - (-'I' [(r' . V)"S(r)] dr', (4.2) ,,=o (n + l ) !  

and the magnetisation M&) by 

n + l  m 
~ o ( r )  = J r ' x j o ( r ' )  1 (-1)'- [(r' . V)"S(r)] dr'. (4.3) 

C f l = O  (n +2)! 

Substituting from (2.14), one can write the latter in the form 

e .  n + l  
j C n = O  (n +2)! 

Mo(r)=-C-' 1 (-l)fl- (i; x ri)[(rj .  v )"s (~) ] .  (4.4) 

There is a direct correspondence with the classical expression. One must only be careful 
to put the super-operators i.7 in the right place. The expression (4.4) is extremely 
useful in formal calculations, as will be demonstrated in 0 6.  

The spherical electric and magnetic multipole moment operators can now be written 
down by direct analogy with the classical definitions. The electric multipole-moment 
operator PE(lmw) is defined by 

PE(lmo) = P(r )  . EE* (r, U )  dr. (4.5) J 
As in the classical case this can be transformed to (Meister and Felderhof 1980) 

PE(lmw) = rp(r)  . lo EE* (hr, U )  dh d r  

-1 

1 

ei[(i j(kr)+ krj;(kr) +gi(kr))YkIr=rj .  (4.6) k [ l ( l +  1 p 2  j 
- - 

The magnetic E-multipole moment operator ME(lmw) is defined by 
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The last expression confirms the conjecture made in 0 I(4). The magnetic M-multipole 
moment operator MM(lmw) is defined by 

MM(lmw) = Mo(r) . Bgo*(r, w )  dr. (4.9) I 
This can be transformed to 

MM(lmo) =- j&). A c * ( r ,  w )  d r  = C  "i;. A?*(rj, w )  
C 'I i c  

= e'H(, (X, A$::(rj, w ) )  = -VYb (Ago*(r, w.)) .  
ja c 

(4.10) 

The last expression is again in agreement with the earlier conjecture. 

5. Magnetic dipole and quadrupole moments 

The general expressions for the frequency-dependent spherical electric and magnetic 
multipole moments have been given in (4.6), (4.8) and (4.10). Often it suffices to use the 
frequency-independent dipole or quadrupole moments. These are found more easily 
from the Cartesian expansions (4.2) and (4.3). 

As a first example we consider the magnetic dipolC and quadrupole moments which 
follow from the exchange current density derived in 0 3. Substituting (3.13) into (4.3) 
one finds for the magnetic dipole moment 

This expression has already been found by Sachs (1948). Similarly one finds for the 
exchange magnetic quadrupole moment 

(5.2) 

As a second example we calculate the relativistic corrections to the magnetic dipole 
moment of an electron moving in a central potential. We consider the unperturbed 
Hamiltonian 

HOA' = H r  + WO, 

H;I' = p2/2m + V(r) 

(5.3) 

where H;I' is the non-relativistic Hamiltonian operator 

(5.4) 

and WO are the first-order relativistic corrections (Messiah 1972) 

h 1 d V  h2 4 

WO = U," + uy + U? = -&+- - -((I. s) + y v 2 v .  
8m c 2m c r dr 8m c ( 5 . 5 )  

The first term is the relativistic correction of the kinetic energy, the second is the 
spin-orbit coupling and the last term is a correction of the potential energy, the 
so-called Darwin term. In order to find the coupling to the electromagnetic field we 
form the Hamiltonian operator H as indicated in (2.1). By application of the rules 
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developed above one finds from U,” a contribution to the current density operator, 

T FMeister and B U Felderhof 

jt(rf) = (-e/8m3cz)bz, [P, W -r)l+l+, (5.6) 

where [ , ]+ denotes the anti-commutator. By substitution in (4.3) one obtains for the 
contribution to the magnetic dipole moment 

m K  = ep21/4m3c3. (5.7) 

This is a relativistic mass correction to the usual orbital magnetic moment of the 
electron. From U,“” one finds a contribution to the current density operator, 

where we have used (3.17). The resulting contribution to the magnetic dipole moment 
is 

eh  1 d V  
mLS=--  -r x ( r  x s). 

4m2c3 r dr (5.9) 

The intrinsic magnetic moment of the electron including its first relativistic correction is 
given by (Messiah 1972) 

m S  = -(ehgS/2mc)s +(eh/2m3c3)p2s, (5.10) 

where g, is the electron g factor. 

first-order perturbation to H:r is 
If the system is placed in a uniform magnetic field B =Be,, then the complete 

W =  W o - ( m o + m s + m K + m L s ) .  B, (5.11) 

where mo = -(e/2mc)l is the non-relativistic orbital magnetic moment of the electron. 
If we restrict attention to S-states then W is diagonal in the InZms,)-representation and 
we find for the fine-structure splitting 

(5.12) 

where (T) = (n001p2/2mIn00) and we have used the virial theorem. The last two terms 
originate from the relativistic correction to the intrinsic magnetic moment (5.10) and 
from the spin-orbit magnetic moment (5.9). For the Coulomb potential V(r) = -Ze2/r 
one has 

(5.13) 

where a = e2/hc is the fine-structure constant. The result (5.12) was also obtained by 
Margenau (1940) and by Perl and Hughes (1953) from a direct calculation of the energy 
levels from the Dirac equation. For alkali atoms the numerical magnitude of the 
correction terms in (5.12) has been estimated by Perl (1953). The present calculation 
has the advantage that the physical origin of the correction terms is much clearer, since 
they are recognised as originating from specific corrections to the magnetic dipole- 
moment operator. For real atoms nuclear mass corrections must also be taken into 
account (Hegstrom 1973). 

(T)/mc2 = Z2a2 /2n2  = 2.66 x lo-’ Z 2 / n 2  



Current density and multipole moment-operators 137 

6. Multipole Hamiltonian 

By substituting (4.1) in (2.8) and using the spherical wave expansion I(4.4) of the vector 
potential, one obtains a multipole expansion for the interaction Hamiltonian VYb 
involving the magnetic multipole moments ME(lmo) and MM(lmw) and the time 
derivative of the electric multipole moment &(lmw). For theoretical and practical 
purposes it is useful to transform to the so-called multipole Hamiltonian in which the 
time derivative is eliminated and the vector potential is replaced by the electric and 
magnetic fields (Power and Zienau 1959, Fiutak 1963, Atkins and Woolley 1970, 
Woolley 1971, Babiker et a1 1974, Felderhof and Adu-Gyamfi 1974). We neglect 
centre-of-mass motion and assume that it makes sense to make a multipole expansion 
about the origin. One then performs the canonical transformation 

H' = AHA-' 

with 

(6.2) 

with P ( r )  as defined in (4.2). The transformed Hamiltonian is 

- I A ( r )  . B(r)  dr. (6.3) 

Expanding in powers of A one has 

H '=Ho+2. r r /  P:(r)dr+ Vi +Vi +. . . , 
with 

where 

(6.4) 

(6.5) 

Vyrb' = -1 P ( r )  . E,@) d r + x  H{,(X, -5Aa(ri)+-  - P({rk}, r )  . A(r)  d r  . 
ia c aria a c ' I  ) 

We show that this last expression can be written as 

VYb'(A(r)) = - I P(r)  . E,(r) dr  - Mo(r) . B ( r )  dr, I (6.7) 

with Mo(r) as defined in (4.3). Using the identity (Felderhof and Adu-Gyamfi 1974) 

n + l  
n=O ( n  +2)! 

a l l P ( r ) . A ( r ) d r = ' A ( r j ) + -  e .  6 ( r )  1 - 
ari c c ( r i .  V )"( r ixB(r ) )  dr, (6.8) ei c I 
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one can rewrite (6.6) as 

n + l  
V Y ~ '  + [ P(r> . EL(r) d r  = c HL( X, J S(r) zo m ( r i a  V)"(rj xB(r))= dr) 

ia 

n + l  = p x  - i:. S(r)(r j .V)n(r jxB(r))dr  

=y c (-1Ym (i: x rj) . [ [(q. V)"S(r)]B(r) dr. 

j c n = ~  (n +2)! 

e.  O0 n + l  
I n=O 

This shows that (6.7) is correct. 

the definitions (4.5) and (4.7), one sees that one can write 

Vi = -1 1 ( ~ T ~ w ~ / R c ~ ) ~ ' ~  x [ ( P ~ ( l m w )  +ME(lmw) +&E(lmU))aE(lmU)t 

Substituting the spherical wave expansion I(4.4) in the perturbation Vi  and using 

w im 

( k f ~ ( l m U )  + & ~ ( l m U ) ) a ~ ( l m U ) ~  + HC], (6.10) 

where ( Y E , M ( I ~ U ) ~  are creation operators for electric or magnetic multipole radiation 
and where we have used 

( 6 . 1 1 ~ )  

(6.1 1 b )  

which follow from (6.7). The transition probability for emission of electric or magnetic 
(Imw) multipole radiation is determined by the matrix el.ements of the operators (6.1 1) 
between initial and final states la) and Ib) of the atom. The probability for absorption is 
determined by the matrix elements of the Hermitian conjugate operators. 

Comparing with I(4.29), one sees that, on the energy shell, the matrix element for 
emission of electric multipole radiation found in the conventional theory is identical 
with that found from the multipole Hamiltonian. Hence in first-order perturbation 
theory the transition probabilities are the same in the two theories. One can show that if 
in both Hamiltonian operators one includes the second-order terms Vz and Vi ,  the 
transition probabilities are the same also in second-order perturbation theory. The 
multipole Hamiltonian has the advantage that Siegert's theorem (Siegert 1937, Sachs 
and Austern 1951) takes a simpler form. In practice the eigenstates la) and Ib) and their 
energies E, and Eb are not known exactly. It follows from (6.1 l a )  that the uncertainty 
in the energy does not introduce additional error, as was suggested by I(4.29). Although 
the transition probabilities are the same whether one uses the conventional or the 
multipole Hamiltonian, this is not true of the line shape. Power and Zienau (1959) have 
adduced evidence that experimental line shapes are better described by the multipole 
Hamiltonian H'.  

P ~ ( l m @ )  + M E ( ~ ~ U )  +&E(lmU) = -Vi (AZ*(r ,  U ) ) ,  

M ~ ( l m ~ ) + J l l ~ ( l m ~ )  = -Vi (Ago'(r, U ) ) ,  
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